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Global Solutions of the Schrodinger Equation
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Normalizable solutions of the Schridinger equation with a poten-
tial of the type used to describe the gquark-antiquark or quark-quark
interactions are discussed. The sigenenergies are computed by con-
necting the series solutions near the origin with the formal asymp-
totic solutions, The Regge trajectories for the charm~anticharm and
the bottom-antibottom systems are obtained in that way. = 1994
Academic Press, Inc,

I INFRODUCTION

Almost two decades of meson and baryon spectroscopy have
contributed 1o reinforce the nonrelativistic quark model of ha-
drons. There are recent reviews of the topic |1, 2| where refer-
cnees (o the original papers can be found. Mesons and baryons
are successfully described as bound states of quarks and anti-
quarks interacting via a potential and obeying the nonrelativistic
Schridinger equation with Breit—Fermi corrections,

Several phenomenological potentials have been used to fit the
experimental masses of the hadrons. However, the ““Cornell” or
“Coutomb plus Yinear”™ potemial,

V)= —a’lr+ b+ cr, (1.1)
seeims to be the most popular, due to the fact that its short- and
leng-range behaviours are inspired respectively by perturbative
and lattice quantum chromodynamics |3], although the values
of the parameters are adjusted phenomenologically to give the
hest fit.

Analytical solutions of the Schrisdinger equation with poten-
tial {1.1) vaiid in the whole range of # from {0 to o have not
yet been obtined. Two independen solutions. in the form of
series expansions in powers of rocan be inuncdiately Tound.
Also, two other independent solutions, expressed as asymptotic
expansions useful for large values of r, can be easily oblained.
The problem, however, is to connect the solutions near the
origin with the asympiotic ones, In order o get global (i.e.,
valid for all r from O to o) solutions. Specifically, the determina-
tion of the masses of the mesons requires the obtention of
eigenvalues of the Schridinger equation for which global solu-

tions can be found that are well behaved (ie., regular at ) and
). A lot of numerical methods have been proposed to find
those eigenvalues. References can be found in recent contribu-
tions {4-7]. But, although very different schemes have been
used, all of them lie on either the numerical integration of the
differential equation or the replacement of the potential by an
approximated one that allows to use analytical methods.

In this paper we apply a different approach, based on connec-
tion relations among the solutions near the origin and the asymp-
tolic ones, 1o the determination of eigenvalues. The connection
problem for second-order linear differential equations with two
irregular singular points was considered by Naundorf [8], who
succeeded in finding, under certain conditions, connection fac-
tors allowing us 10 express the power series solutions as combi-
nations of the asymptotic expansions. Those factors obey a
system of linear equations whose coefficients are obtained by
{numerical, in general) summation of series. Naundorf’s method
is applicable, and becomes considerably simplified, in the case
of one of the singular points being regular, as it happens for
the Schrodinger equation with potential (1.1).

We recall in Section 2 the solution of Naundorf to the connec-
tion problem and particularize it to the Schrodinger equation
with Coulomb plus linear potential. In Section 3 we examine
the conditions to be satisfied by the connection factors in order
to have physically well-behaved solutions. Section 4 shows
some energy eigenvalues obtained for the sets of parameters
of the potential used to describe respectively the charmonium
and the bottomonium states. Finally, in Section 5, we add
SOME Comments,

2. THE CONNECTION PROBLEM
The redoced radial Schrodinger equation for a particle of

mass oL cnergy Foand angular momentum /. ina potential
Viry, reads

(f‘z (i{z— - M) + W) — E) w(r) =0, (2.1)

2m \d#? ¥

that, in the case of the potential being given by Eq. (1.1),
turns out
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3

d
e u(ry + (

zﬁ—'?(—cr+E—b+a7)wl(l;i))u(rho.

(2.2)
Let us introduce, as usual, dimensionless variable

z= Cmc/h)"? ¢ (2.3

and parameters

e=(2micY(E—b), as@dmiti o a.  (2.4)
Let us also denote by v(z) the function u(r) in terms of the new

variable. Equation (2.2) then becomes

2
ELv(z) + (—z +e+ g - M) vz} =0. (2.5

.
dz’ z*

Certain particular values of the parameters lead to well-
known differential equations. For instance, for @ = 0 and
{ = 0 one obtains the equation obeyed by the Airy functions
of variable z — £. Also, for ¢ = 0 and @ = 0 the function
z "u(z) obeys a Bessel equation of order (2! + 1¥/3 and
variable (2/3)¢?z*?, Here we are interested, however, in
the general case, when all terms in (2.5) are assumed to be
present.

Although Eq. (2.5) has already a dimensionless form,
its asymptotic solutions contain fractionary powers of the
variable. To avoid this, it is preferable to introduce a new
variable

t=z"" (2.6)
in terms of which, and replacing v(z) by w(s), Eq. (2.5) be-
comes

P d*w(t) o dw(D)

dr dt @D

+ (—41° + der* + dart ~ Al + )w(s) = 0.

This form of the Schrédinger equation is suitable for application
of Naundorf’s method.

Equation (2.7) presents a regular singular point at t = 0 and
an Irregular (of rank 3) singular one at + = <. Power series
solutions of the form

W'(I) = 2 C”r'”’P, Co = l’ O < |I| < ®,

n=0

(2.8)

can be found for two different values of the exponent p, namely,
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p=2042, p=—2, (2.9
and coefficients ¢, obeying the recurrence relation
({n+ pn+p—2)— 4l + 1)), + dac,--
(2.10)

+ 48(.'"_4 - 46‘11*6 =0

For ! complex or real different from an integer or half integer
that recurrence does not present any difficulty; therefore, two
independent solutions of the form (2.8) are found. For integer
or half integer /, instead, only one of the solutions, that
corresponding to positive p, is of the form (2.8); the other
independent solution contains logarithmic terms. Of course,
the case of nonnegative integer / is the most relevant from the
physical point of view. Nevertheless, since we are interested
in solutions that are well behaved at the singular points,
we can disregard those presenting such logarithmic terms
and limit our subsequent discussion to solutions of the form
{2.8}.

Two independent formal solutions, useful for large ¢, can be
found by the substitution of

(%)

) o i§) - .
Wil = exP(E —’.—tf> w1 o,
’ i J s=0

= (2.11)
h'=1, k=12,
for w(r} in Eq. (2.7). The values of the exponents are
al'=--2, o' =2, (2.12a)
a’=0, of'=0, (2.12b)
a=g, o= —g (2.12¢)
u = -3 u?=-g (2.12d)

and the recurrence for the coeffictents % becomes

25a3h\ - (a% + 40)’17\_1 + (2,“. - l - 2(§_h 2))0:'|h;—2
Tl —2) -4+ D
+ (s =3 — 1 — 2unh_;,

(2.13)

the superindex (k) being understood. Bearing in mind that

% _ o
ay = Toy, o) = T

(2.14)
and having taken
B = =1,

(2.15)

it is immediate to check that
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AP = (—1yRD. (2.16)
This leads to a symmetry,
Wilk(e* ™) = eF ), 217

between the formal solutions, that obey also the circuital re-
lation
wil(e*™) = e wiii(1),

k=1,2. (2.18)

The connection problem consists in obtaining, for a given ray
(fixed arg(#)), numbers T, allowing us to express the asymptotic
behaviour of the power series solution as a linear combination
of the two formal solutions, i.e.,

w(ty ~ Z T, |1 — =, (2.19)
k=1

the rigorous meaning of symbol ~ being explained in Ref. [§].
In what follows we report the solution to that problem given
by Naundorf, particularized to Eq. (2.7), omitting all proofs
and details of lemmas and theorems, that the interested reader
can find in Ref. [8]. Moreover, the obtention of connection
factors requires us to consider different regions of the complex
t-plane, namely, the sectors

— I 3y
Sip = {r: | arg(@l’r) — 2pa| <}, (2.20)

k=1,2, paninteger.

All sectors have central angle 27/3, S, and S, ., being sepa-
rated by the ray with argument ((2p + D)7 — arg(a{))/3. As
we are interested mainly in the physical problem, we will look
for connection factors T, on the positive real axis of the r-
plane, that is, for arg(r) = 0.

The Naundorf’s method makes vse of the Heaviside’s expo-
nential series

2 yrté

,,:E_m (n+ 8!

that is equal to exp(x) for every integer-valued & and, although
divergent everywhere in the complex x-plane, that verifies

e n+és

explx) ~ Ew i+ o’

|arg(x)| < =, (2.21)

for any other value of 8. Accordingly, the factor exp(al'r'/3)
in w'¥(#) admits three linearly independent series expansions,
indexed by L. = 0, I, 2,
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((aﬂk)ls)r"i)rl+:5+ul3
e (1 + (6 + LY

at&)
exp( 3‘ IJ)

Multiplication of this expression by the Taylor expansion of
exp(a') gives for the exponential in the right-hand side of
Eq. (2.11),

arg(e't)| < 7.

(2.22)

ERp U] =
exp(z g."_ﬂ) S gt e S, (2.23)
= n=—0
with
Gy - [ L)3) (a(}h/?))qﬂaum (arlk))u—L—sq

k=12, L=01,2,

where the symbol [ | stands for the integer part. In other sectors
one would obtain

3 k)
+
exp(E gj"—ﬂ) ~exp( 2mpL 3 6)

=1

(2.25)

> gttt e,

p=—m

Equation (2.23) allows one to write Eq. (2.11) in the form

wi ~ Zf“'”*ﬂ k=12, L=0,1,2, 1E S, (2.26)

filr = 2 ght (2.27)

and the value of & being chosen so as to satisfy

uw + 8= p. (2.28)
As proved in Ref. [8], comparison of Egs. (2.8) and (2.26)
allows one to conclude that the coefficients ¢, of the convergent
series solution depend linearly on the ",

2

i
:z z B (ﬁL}
k.L »

k=

(2.29)

for all n larger than a certain N in such a way that

M+ el o+ I+ NP <|n+6+pl(jn+5+p — 1)
(2.30)
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Once the (complex) constants 8, are obtained from the system
of Egs. (229) withn = N+ 1, N + 2, ..., N + 6, one can
define the coefficients

Tip= 2, expimp(L + p — w)/3)Bz.  p an integer,
L=0

(2.31)

in terms of which the connection factors become
T,=T, ifteS,,, (2.32a)
To=4(T, + Tepr) (2.32b)

if ¢ is on the boundary ray that separates §,, and S, ..

3. NORMALIZABLE SOLUTIONS

As stated in the Introduction, we are interested in solutions
to the physical problem of eigenenergies; that is, we are
looking for real values of the parameter £ for which solutions
regular at the singular points do exist, the angular momentum
parameter [ being assumed to be nonnegative real. The
solution physically acceptable at + = 0 is of the form (2.8)
with p = 2/ + 2. On the other hand, as 1 — o, the formal
solution win(r) is well behaved over the ray arg(r) = 0,
whereas wfi_{.(t) diverges. Obviously, the energy parameter &
must be such that the connection factor T, in Eq. (2.19)
vanishes over the ray arg(f) = 0, or, equivalently, in view
of Eq. (2.32a),

Ty =10, (3.1
that, bearing in mind Eq. (2.31), can be written
> B =0 (3.2)
=0

Up to now we have followed the notation of Ref. {8]. In
order to benefit from the symmetries of the particular case
under consideration, it is convenient to write the linear system
of Egs. (2.29) in terms of new unknowns,

R agk) (8+L)13
Bir=1|— Bes

3 (3.3)

and coefficients

. a(;c) —(§+L)3 x
hary — | 23 ry alkLlp (k)
=15 VDT SR R

=

with
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D\ —(8+L1/3
Akl — | X3 kL)
gﬂ - 3 gn

{tn=1L)/3)

(3.5)
(0‘.'(3“/3)'5" (a(lkl)n—L—Sq

S (Gt (B LN (n— L= 3

Obviously, the new system reads

SSFIB =6, n=N+1LN+2..N+6 (36)

k=1 L=0

The advantage of the new notation lies on the fact that, in view
of Egs. (2.14),

A O Vi (3.7)
and, bearing in mind Eq. {2.16),
£2.L) — (_l)n—L A(l.-'-}_ (38)

This symmetry property allows one to decouple the system
(3.6) into two systems of three equations for a new set of
unknowns,

Yo = Bz,o + Bm, Y= Egu - pé1.| vy = Bz.z + néi,l . (3.9a)
o = Bz.u - BI,O! mn= BZ.I + .éu y M= .éz.z - Bl,z- (3.9b)

The new systems of equations are

;}f‘f“ Y= n=mg gt 2ng+4,  (3.10a)

I_Z%fff-”mﬁ =¢,, n=ng+ l,n T+ 3,n,+5, (3.10b)

ny being any even integer larger than N. It is obvious from Eq.
(2.10) that the ¢, are equal to 0 for odd #. The only solution
of system (3.10b) is, therefore,

nw=0 L=012 (3.11)
This implies that
Y= 2B, L=0,1,2, (3.12)

and, consequently, the condition (3.2) for having physically
acceptable solutions becomes

S (213) Uiy, =0, (3.13)
i=o

Both this equation and the fact that the ¥'s are the’ solutions
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of (3.10a) lead to a new form of the condition for the existence
of normalizable solutions,

F200 2 Rl

iy f 'y iy C"n

FR0 2 7

ny+2 fn“+2 n,+2 Cr 42

det . . =0, (3.14)

i20) (2,1} i2.2)

ny+d fn”+4 f"n+4 Cyhd

1 (372" (3R 0

the dependence on the energy parameter £ being implicit in

the coefficients £ " and ¢,.

4. CHARMONIUM AND BOTTOMONIUM STATES

We have tested the feasibility of the above-described method
by applying it to the Schrédinger equation with a Coulomb
plus linear potential, Eq. (1.1), that reproduces the measured
masses of the known charmonium and bottomonjum states. The
parameters take the values [2]

-0.3548,

b= 05466 GeV, ¢ = 0.2079 (GeV),

4.1
the radial distance r being expressed in (GeV)™'. Assuming

for the masses of the charm and bottom quarks, respectively
(2],

m, = 1.632GeV, m, =5015GeV, (4.2)

the parameter a in Eq. (2.5) takes the values

IR BRI B IR VO B VRS | R

FIG. 1. Energies of the charmonium for continuously varying angular
momerntam. Only the five lowest values of the dimensionless energy parameter
€ are shown, The corresponding values of the cnergy E are obtained from
those of £ by means of Eq. (2.4) of the 1ext, with the potential parameters and
mass given by Eqgs. (4.1) to (4.3).
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FiG, 2. Energies of the bottomonium for continuously varying angular
motnentum. The comments in caption of Fig. 1 are applicable atso here.

a, = 1.1069, a,= 2.3395. (4.3}

By using Eq. (3.14), we have obtained some eigenvalues
of the energy parameter £ in both cases of charmonium and
bottomonium. Figures | and 2 show how those eigenval-
ues vary with the angular momentum, i.e., the Regge trajec-
tories.

A few comments about the computational procedure are in
order. There is no difficulty at all for the computation of the
coefficients ¢,. The f‘ %4 however, are obtained by summation
of the series in Eq. (2.27) that, although convergent [8] as fast
as the geometric series

ES

k 2 g
> et et — alh]

5=0

they may require the inclusion of many terms if one desires a
reasonable accuracy in the determination of the eigenenergies.
The number of needed terms in the series increases as & grows,
A test of the reliability of the algorithm is provided by the fact
that the solutions of Eq. (3.14) for « = 0 and [ = 0 are the
absolute values of the zeros of the Airy function Ai. More
terms in the series require also more precision in their computa-
tion. For £ about 10, around 400 terms calculated with quadruple
precision are needed to determine the eigenvalues with at least
eight correct digits. For larger values of & the method should
not be recommendable.

The computation of A, encounters overflow problems when
large values of s need to be taken into account in Eq. (3.4).
For that reason it is preferable to organize the evaluation of
the £ according to a more suitable form of Eq. (3.4),

7 N §n+l hl §n+2 hz ))
n ﬂh 1+ 7 1+ e | I S . 4.4
f 8 0( g hl]( gn+1h2( ) ( )
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the superindices k and L being omitted here and in what follows.
The quotients

g, = . (4.5)
T hr‘. '
can be easily obtained by means of the recurrence
2(13 H] = CE% + 4([,
oy = ot + da + 67 2u — Day,
b0, = o + da + (2~ 1 Q) o+ 6 (4.6)

(ulp — 2) — 4+ D)),
2o, =af +4a + 60,2 — 1 — 2(s — 2y,

+ O — 2) — M+ D) (5= 3)s — 1 — 2))).
For the quotients

a
gr|+,t

gn+s—|

no special algorithm is needed; use of Eq. (3.5), foilowed by
obvious simplifications, is adequate.

5, FINAL COMMENTS

The Naundorf’s method, adapted to the problem under con-
sideration, reveals it to be adequate to determine the eigenener-
gies of the Cornell potential. As we have seen, they are obtatned
as zeros of the determinant of a 4 X 4 matrix. The procedure
is not fully analytic, since 12 elements of the matrix are obtained
numerically, but it presents the advantage of avoiding the nu-
merical integration of the differential equation.

The method is equally useful 10 obtain the values of the
parameters in the potential for which a particular eigenenergy
would be obtained. The equation giving those values is, of
course, Eq. (3.14) with the particular value of £, a being now
the unknown.

Equation (3.14} becomes considerably simplified if one is
interested in obtaining the critical values of the coupling con-

30t

stant, Le., those values of a for which a zero eigenenergy
exists. This problem, traditionally considered cumbersome for
conventional potentials [9], does not present any special diffi-
culty in the case of confining ones. For & = (& the expression
(3.3) for 3% trns much simpler,

Otg“ {R=L)/3

3
(n + 5)(
3 :

0, forn — L+ 0mod 3,

, forn—L=0mod3,
(5.1)

and the algorithm (4.4) to obtain the f ®b becomes

(a3)(nuu—;)ﬂ
\ 3 @
fo= (l + :

T+ S+ A)/3)1hl

35 hora
x _— + .. .
(]+n+5+6+Ah3+A(i )))

A being the lowest nonegative integer such that

B34y
nt+d+3+4A A

(5.2)

a— L+ A=0mod3. (5.3)
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